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An investigation is made into water-wave propagation through an array of vertical
cylinders extending to infinity and periodic in both horizontal directions. Methods
are presented for the calculation of the frequency ranges for which wave propagation
without change of amplitude is possible (‘passing bands’), and for which propagation
without change of amplitude is not possible (‘stopping bands’). Some of the techniques
may be used to determine the change of wave amplitude for frequencies within the
stopping bands. Approximate and numerical techniques are used to show how this
infinite-array problem is related to trapped modes, Rayleigh–Bloch waves, and the
problem of wave diffraction by a grating made up of a finite number of cylinder rows.

1. Introduction
The problem of a particle moving in a periodic potential has been studied exten-

sively in solid-state physics and there is an established formalism for its investigation
(Ashcroft & Mermin 1976). A mathematically related problem is the propagation
of water waves above a patch of sea bed with undulations that are periodic in one
horizontal direction (see O’Hare & Davies 1993, and references therein). Given a
particular sea bed, it is observed that there are ranges of frequency where there is
strong reflection, and complementary ranges for which there is weak reflection, of
a monochromatic incident wave. Recently, Chou (1998) has considered water-wave
interaction with an infinite array of periodically arranged surface scatterers using
the formalism of solid-state physics. He investigated geometries that are periodic in
both one and two horizontal directions and found that for certain ranges of fre-
quency wave propagation through the array without change in amplitude is possible,
although in general there will be a change in phase from one scatterer to another. In
complementary ranges of frequency, wave propagation without change of amplitude
is not possible. In the terminology of solid-state physics, these ranges of frequency are
known as passing bands and stopping bands, respectively. Similar phenomena have
been observed in other systems such as the propagation through periodic media of
electromagnetic waves (e.g. McCall et al. 1991), and elastic and acoustic waves (e.g.
Sigalas & Economou 1992). Mention might also be made of the extensive literature
on lattice sums (e.g. Chin, Nicorovici & McPhedran 1994) which may be used for
computational purposes in such problems.

In this paper, the propagation of water waves through an array of identical vertical
cylinders that is periodic on both horizontal directions is examined in detail. This
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work is motivated in part by a proposal for a airport in Japan that involves a
floating platform supported by thousands of cylindrical legs. Over recent years, this
has provoked interest in how water waves interact with very large arrays of vertical
cylinders (Kagemoto & Yue 1986; Kagemoto 1998; Kashiwagi 2000). The main
purpose of the work described here is to investigate how knowledge of the relatively
straightforward problem of wave propagation through infinite arrays of cylinders can
be used to make deductions about propagation through finite arrays. Although set
into the context of water waves, the present work also has an acoustic interpretation
and related work on sound propagation through tube bundles is reported by Heckl
& Mulholland (1995).

In this paper the problem is treated on the basis of inviscid, linear theory. (Kashi-
wagi 2000 reports comparisons of numerical calculations based on this theory with
experimental data for scattering by an array of 64 cylinders and obtains good qual-
itative agreement.) The problem is formulated in § 2 in terms of a velocity potential
for the flow. Because of the periodic arrangement of cylinders, it is possible to confine
attention to a cell in a horizontal plane that contains only a single cylinder. For a
rectangular array this primitive cell is also rectangular and so-called Bloch conditions
are used to relate the potential and its normal derivative on opposite sides of the
rectangle. Throughout this paper the problem of wave propagation through an infinite
array will be referred to as ‘the Bloch problem’. An approximate solution of the Bloch
problem for unidirectional wave propagation is presented in § 3. This is used to show
how passing and stopping bands arise in the water-wave problem. Within a passing
band waves are able to propagate through the array without change of amplitude.
Within stopping bands there is change in wave amplitude with distance.

For a passing band the boundary-value problem is self-adjoint and the frequencies
can be calculated quite straightforwardly by means of a variational principle. This
method is used in § 4 to investigate how the band structure develops as the cylinder
radius is increased from zero. In addition, calculations are presented to show how the
solutions obtained approach previously known trapped mode and Rayleigh–Bloch
wave solutions as one of the cell dimensions is allowed to increase without bound. In
this context, the term Rayleigh–Bloch wave is used to describe a non-periodic wave
that propagates along an infinitely long line of equally spaced cylinders and decays
to zero in the perpendicular horizontal direction. The term trapped mode is here
reserved for certain limiting cases when the solution and the geometry have the same
periodicity.

The variational method of § 4 gives no information about the rate of change
of amplitude with distance for frequencies within stopping bands. Two numerical
methods which calculate this rate of change are given in § 5. In the first method, a
series that satisfies the cylinder boundary condition identically is applied pointwise to
satisfy the conditions on the cell walls. This method is straightforward to use but is
not very robust for higher frequencies. The second technique is a more robust, but also
more computationally expensive, boundary-integral method based on an application
of Green’s theorem.

The final sections of the paper deal with wave diffraction by a finite number of
parallel rows of cylinders, where each row is of infinite length. In § 6, a wide-spacing
formulation is used to demonstrate explicitly how, for the case of wave propagation
normal to the rows, the transmission beyond a finite number of rows is related to
the Bloch problem. In § 7, various numerical calculations using the methods of §§ 4–5
are used to investigate the finite-array problem when waves are able to propagate in
more than one direction.
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2. General formulation
A periodic array of identical, rigid, circular cylinders, which extend to infinity in all

horizontal directions, stands in water of constant depth h. Cartesian coordinates are
chosen so that the x- and y-axes lie in a horizontal plane and the z-axis is directed
vertically upwards. The origin of coordinates is on the axis of one of the cylinders
and located in the plane of the mean free surface. Water waves of radian frequency ω
propagate through the array. The water is assumed to be inviscid and incompressible
and the flow to be irrotational. The cylinders extend throughout the depth and so,
under the usual assumptions of the linearized theory of water waves, solutions for
the velocity potential may be sought in the form

Φ(x, y, z, t) = Re {φ(x, y) cosh κ(z + h)e−iωt}, (1)

where

(∇2 + κ2)φ = 0 (2)

throughout the now two-dimensional fluid region, and κ is the real positive root of
the dispersion relation

ω2 = gκ tanh κh. (3)

Ultimately in this paper, interest will be in scattering problems that are forced by
an incident wave with wavenumber κ that has the same depth dependence as the
form in equation (1). Other possible forms of the depth dependence in (1) are not
relevant to a scattering problem because of the orthogonality properties of the vertical
eigenfunctions in the linearized water-wave problem.

The geometrical description of the array (or lattice) of cylinders adopted here is
that used in the theory of crystal structures in solid-state physics (see Ashcroft &
Mermin 1976, Chapters 4 and 5). Let a1 and a2 be two vectors that span the lattice:
that is every translation between the axes of cylinders in the horizontal plane has the
form of a so-called lattice vector

R = m1a1 + m2a2, (4)

where m1 and m2 are integers. It is also convenient to introduce so-called reciprocal
lattice vectors K satisfying

K · R = 2πp (5)

where p is an integer. If the reciprocal lattice vectors are expressed in the form

K = n1b1 + n2b2 (6)

for integers n1, n2 then (5) is satisfied provided

ai · bj = 2πδij , (7)

where δij is the Kronecker delta.
In other contexts (Ashcroft & Mermin 1976, Chapter 8; Chou 1998), Bloch’s

theorem is used to justify looking for solutions in the form

φ(r) = eiq·rψ(r), (8)

where r is the position vector of an arbitrary point in the array, q is a real-valued
vector, and the function ψ has the same periodicity as the lattice, that is

ψ(r + R) = ψ(r) (9)

for all lattice vectors R. Here solutions are also sought in this form, but in the
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Figure 1. Definition sketch for one cell of a rectangular array.

water-wave problem q may be complex. The above is exactly equivalent to seeking
solutions that satisfy

φ(r + R) = eiq·Rφ(r), (10)

where R is again any lattice vector. The real part of q measures the change in the
phase of the motion as the lattice is traversed. If q has a non-zero imaginary part
then there is also a change in amplitude as a wave propagates through the array.

Two basic approaches to the problem are used here. One approach is to specify
the wave vector q = q1i + q2j and then to solve for the wavenumber κ (here i
and j are unit vectors in the x- and y-directions, respectively). Alternatively, κ and
one component of q is specified and the problem is then to determine the second
component of q.

For a rectangular array of cylinders of diameter D with

a1 = Li and a2 = Wj (11)

it is sufficient to consider a single rectangular cell of length L and width W as
illustrated in figure 1. The corresponding primitive reciprocal lattice vectors are

b1 =
2πi

L
and b2 =

2πj

W
. (12)

For this geometry, equation (10) is equivalent to the four independent conditions

φ(L/2, y) = eiq1L φ(−L/2, y),

∂φ

∂x
(L/2, y) = eiq1L

∂φ

∂x
(−L/2, y),

 |y|6W/2, (13)

φ(x,W/2) = eiq2W φ(x,−W/2),

∂φ

∂y
(x,W/2) = eiq2W

∂φ

∂y
(x,−W/2),

 |x|6L/2. (14)

The mathematical problem has been reduced to the solution of the field equation (2)
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within the two-dimensional fluid region of the cell {|x|6L/2, |y|6W/2} subject to
the boundary conditions (13)–(14) and the condition of no flow through the cylinder
wall, namely

∂φ

∂r
= 0 on r = D/2, (15)

where (r, θ) are standard plane polar coordinates with origin at the centre of the
primitive cell illustrated in figure 1.

Equation (10) is unchanged if q is augmented by any reciprocal lattice vector
K . Thus, given a solution φ(r; q) then φ(r; q + K ) is also a solution. Consequently,
it is sufficient to restrict attention to the so-called ‘first Brillouin zone’ {Re q1L ∈
[−π, π], Re q2W ∈ [−π, π]}, as long as it is born in mind that for any pair (κ, q),
for which the problem has a non-trivial solution, such solutions also exist for pairs
(κ, q + K ). This method of displaying results is known as a ‘reduced zone scheme’
(Ashcroft & Mermin 1976, p. 160).

3. A wide-spacing approximation
To illustrate clearly some important features of the problem defined by equations (2)

and (13)–(15) an approximate solution is now presented for the case q2 = 0. The main
assumption is that the cell length in the x-direction is much greater than the wave-
length so that κL � 1. In other words, for the corresponding infinite array the
spacing between those rows oriented parallel to the y-axis is large compared to
the wavelength. Further, only solutions symmetric about y = 0 are considered and
the boundary conditions (14) are replaced by the special case

∂φ

∂y
= 0 on y = ±W/2, (16)

which is equivalent to having solid channel walls at y = ±W/2. The conditions (13)
are retained in their general form. It will also be assumed that the wavenumber
satisfies κW < 2π so that only waves with no y dependence may propagate in a
channel of width W . The main aim is to calculate the so-called Bloch transmission
coefficient

TB = eiq1L (17)

which measures the changes in phase and amplitude of a wave as it propagates
through one cell of the array in the direction of x increasing (see equations (13)).

If the length L of the cell is sufficiently large then only plane waves propagating
along the channel can exist in the vicinity of x = ±L/2; evanescent modes of the
form

exp(∓[(2mπ/W )2 − κ2]1/2x) cos (2mπy/W ), m = 1, 2, 3, . . . ,

will be negligible in these regions. Thus, in the neighbourhood of x = −L/2,

φ = A1e
iκx + B1e

−iκx, (18)

and in the neighbourhood of x = L/2,

φ = A2e
iκx + B2e

−iκx, (19)

for some complex constants A1, A2, B1 and B2. The wave with amplitude A2 propagates
away from the cylinder and is due to the transmission of A1 past the cylinder and the
reflection of B2 from the cylinder. Similarly, the wave with amplitude B1 arises from
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the transmission of B2 and the reflection of A1. Thus

A2 = TA1 + RB2 and B1 = TB2 + RA1, (20)

where R and T are the reflection and transmission coefficients for a single cylinder
in the channel (cf. Heckl 1992, equations 37). The boundary conditions (15) and (16)
are used in the calculation of R and T , which are assumed to be known for all κ.
The Bloch conditions (13) give

A2 = A1e
i(q1−κ)L and B2 = B1e

i(q1+κ)L (21)

which when combined with equations (20) yield

S

(
A1

B1

)
= TB

(
A1

B1

)
(22)

where TB = eiq1L and

S =

(
(T − R2/T )eiκL ReiκL/T

−Re−iκL/T e−iκL/T

)
(23)

is the so-called scattering matrix which appears in the scattering problem described
in § 6. The allowable values of TB are just the eigenvalues of S which are given by
the roots of

T 2
B T e−iκL − TB (T 2 − R2 + e−2iκL) + T e−iκL = 0. (24)

If the complex number T is expressed in the form

T = |T |eiδ (25)

then it may be shown that

R = |R|ei(δ±π/2) (26)

(Mei 1983, § 7.6.2, describes the derivation for the purely two-dimensional case, the
channel case is a trivial extension). Use of these relations and the energy relation

|R|2 + |T |2 = 1, (27)

all valid below the cut-off wavenumber κW = 2π, allows the above quadratic to be
rewritten as

T 2
B − 2 cos (δ + κL)

|T | TB + 1 = 0. (28)

By a standard result for quadratic equations, the product of the roots is unity so that
if eiq1L is a root then so is e−iq1L. The sum of the roots then yields

cos q1L =
cos (δ + κL)

|T | ≡ f(κL), (29)

say (cf. Ashcroft & Mermin 1976, p. 148), which is an equation for q1L entirely in
terms of real quantities. It is perhaps helpful to think of κ as the ‘local’ wavenumber
of propagating modes while q1 governs the phase and amplitude variation of these
modes as they propagate through the array. Provided |f(κL)|6 1, equation (29) has
only real solutions for q1L and waves will propagate through the array with their
amplitude unchanged. The ranges of frequency for which this occurs are known in
solid-state physics as ‘passing bands’. However, whenever |f(κL)| > 1 solutions are of
the form q1L = nπ± iQ for real Q > 0 and some integer n (in the reduced-zone scheme
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n = 0 or n = ±1). The ranges of frequency for which propagation without change of
amplitude is impossible are known in solid-state physics as ‘stopping bands’.

In contrast to the application of this theory to crystal lattices, complex q in the
water-wave problem has a physical interpretation. Further discussion of this is given
later in § 5.1 where a method for the computation of complex q is presented. The next
section is devoted to a method of computation valid for real q only.

4. Numerical calculations for the passing bands
Attention is now turned to numerical methods for the calculation of solutions to

the problem defined by equations (2) and (13)–(15). In this section real values of the
Bloch wave vector q = {q1, q2} are considered; such values correspond to the passing
bands introduced in § 3 in which waves are able to propagate through an infinite
array without change of amplitude.

A computational method for the passing bands based on a variational formulation
is presented in § 4.1. Results are given in § 4.2 that show how the stopping bands
develop as the cylinder size is increased. The connections between the Bloch problem
and previously known solutions for trapped and Rayleigh–Bloch waves are discussed
in §§ 4.3 and 4.4, respectively.

4.1. Variational formulation of the eigenvalue problem

For a specified real Bloch wave vector q = {q1, q2} the problem is self-adjoint and
the corresponding infinite sequence of eigenvalues λ = κ2 of the negative Laplacian
may be determined by a standard application of the Rayleigh–Ritz method (see, for
example, Duff & Naylor 1966, Chapter 6). The Rayleigh quotient for a given trial
function u is

R(u) =

∫
A

|∇u|2 dA∫
A

|u|2 dA

, (30)

where A is the two-dimensional fluid domain within the horizontal cross-section
illustrated in figure 1. The Neumann condition (15) is a ‘natural’ boundary condition
and need not be incorporated into the trial function u. However, it is essential that u
satisfies the Bloch condition (10). This is achieved by writing

u =

P∑
m,n=−P

Amne
i(q+Kmn)·r (31)

where

Kmn = 2π
(m
L
i +

n

W
j
)

(32)

is a reciprocal lattice vector, as defined in equation (5), and r = xi+yj is the position
vector of an arbitrary point in A. Approximations to the eigenvalues correspond to
the local minima of R(u) with respect to variations in the coefficients Amn. This leads
to the generalized eigenvalue problem

P∑
m,n=−P

(Eklmn − λHklmn) = 0, k, l = −P , . . . P , (33)



108 P. McIver

for λ where

Hklmn =

∫
A

ei(Kkl−Kmn)·r dA =


− πD

αklmn
J1

(
1
2
Dαklmn

)
, k 6= m and l 6= n,

WL− 1
4
πD2, k = m and l = n,

(34)

Eklmn = [(q1 + 2πk/L)(q1 + 2πm/L)

+(q2 + 2πl/W )(q2 + 2πn/W )]

∫
A

ei(Kkl−Kmn)·r dA

=
[
(q1 + 2πk/L)(q1 + 2πm/L) + (q2 + 2πl/W )(q2 + 2πn/W )

]Hklmn, (35)

αklmn = 2π

(
(k − m)2

L2
+

(l − n)2

W 2

)1/2

, (36)

and J1 denotes the Bessel function of the first kind and order one.
The eigenvalue problem is solved using standard numerical techniques. The value

of P required to achieve a particular accuracy depends on the parameters W/L and
D/L. Most of the calculations in this paper are for W/L = 1 and D/L = 0.5; in
this case P = 12 is sufficient to obtain at least seven-figure accuracy for the twelve
smallest eigenvalues. Smaller values of D/L or values of W/L significantly different
from unity require larger values of P .

Although the above formulation uses q1 and q2 as input and then solves for κ,
it is relatively straightforward to adapt the technique to use q2 and κ as input and
then solve for q1. Let {κi(q1, q2), i = 1, 2, . . .} denote the set of the square roots of
the eigenvalues λ corresponding to specified values of q1 and q2. Fix q2 and for the
chosen κ define

f(q1; κ, q2) = min
i
|κ− κi(q1, q2)|. (37)

Now determine the local minima of f(q1; κ, q2) as a function of q1 ∈ [0, π/L]. If a
minimum of f(q1; κ, q2) is zero (within some tolerance), then the corresponding value
of q1 is a solution (there may be more than one such q1). If the global minimum of
f(q1; κ, q2) is not zero then, for the specified q2, the chosen κ is in a stopping band.

4.2. Results

The case q2 = 0 will be considered in some detail. This case can be interpreted by
writing the potential in terms of parts that are symmetric and antisymmetric in y so
that

φ(x, y) = φS (x, y) + φA(x, y), (38)

where

φS (x, y) = 1
2
[φ(x, y) + φ(x,−y)] (39)

and

φA(x, y) = 1
2
[φ(x, y)− φ(x,−y)], (40)

and hence
∂φS

∂y
(x, 0) = φA(x, 0) = 0. (41)

From the Bloch conditions (14), it follows immediately that

φS (x,W/2) = 1
2
[1 + e−iq2W ]φ(x,W/2), (42)
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Figure 2. Boundary conditions and symmetries for type I and type II modes (q2 = 0).
Notation: N – Neumann, D – Dirichlet, S – symmetric, A – antisymmetric.

∂φS

∂y
(x,W/2) = 1

2
[1− e−iq2W ]

∂φ

∂y
(x,W/2), (43)

φA(x,W/2) = 1
2
[1− e−iq2W ]φ(x,W/2), (44)

∂φA

∂y
(x,W/2) = 1

2
[1 + e−iq2W ]

∂φ

∂y
(x,W/2), (45)

and so when q2 = 0

∂φS

∂y
(x,W/2) =

∂φS

∂y
(x,−W/2) = φA(x,W/2) = φA(x,−W/2) = 0. (46)

Thus, solutions to the problem with q2 = 0 correspond either to motions that are
symmetric about y = 0 and satisfy homogeneous Neumann conditions on y = ±W/2
(referred to here as type I modes), or to solutions that are antisymmetric about y = 0
and satisfy homogeneous Dirichlet conditions on y = ±W/2 (type II modes). The
various boundary and symmetry conditions are illustrated in figure 2. All solutions
satisfy the Bloch conditions (13).

The type I and type II modes (as well as other modes) could be solved for sepa-
rately by making appropriate choices of trial function with trigonometric functions.
However, the determination of the form of the elements of the matrices in (33) is
then a rather longer calculation. It is simpler to adopt the approach given above
and identify the modes by computing the boundary values of the eigenvector and its
normal derivative.

Calculations are now presented for various geometrical parameters in figures 3–5;
the results are displayed in the reduced-zone scheme discussed at the end of § 2.
Because of the geometrical symmetries, a reversal in the sign of q1 gives essentially
the same solution, but with wave propagation in the opposite direction, and thus
attention is restricted to q1L ∈ [0, π]. Before presenting numerical results for the full
problem, it is instructive to consider the problem when there is no cylinder present
so that only the Bloch conditions need be satisfied. For simplicity, attention will be
restricted to modes with κW < 4π; for any q1, type I modes are

φ = eiq1x, κ = q1, (47)
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Figure 3. Eigenvalue κL vs. wave vector q1L; W/L = 1, D/L = 0, q2L = 0.
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Figure 4. Eigenvalue κL vs. wave vector q1L; W/L = 1, D/L = 0.1, q2L = 0.

φ = eiq1x cos
2πy

W
, κ =

(
q2

1 +
4π2

W 2

)1/2

, (48)

and the only type II modes are

φ = eiq1x sin
2πy

W
, κ =

(
q2

1 +
4π2

W 2

)1/2

. (49)

Clearly, the second type I mode and the type II mode share the same eigenvalue
κ. Results for the case W = L are displayed in figure 3 and each continuous curve
linking q1L = 0 to q1L = π, here called a branch, is labelled as either type I or type
II. The branches of each mode type are indexed in strictly ascending order of κL.
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Figure 5. Eigenvalue κL vs. wave vector q1L; W/L = 1, D/L = 0.5, q2L = 0.

Note that some branches of type I modes cross and the indexing has been chosen to
reflect the behaviour observed when a cylinder is introduced.

For a cylinder of non-zero but small radius, as in figure 4, the pattern is superficially
very similar. However, there are three significant differences. First, the type I and type
II modes with identical eigenvalues in the absence of the cylinder have now split;
identification of the branches was made by computing the corresponding eigenvector
and verifying the boundary conditions. Secondly, the crossings of type I modes
no longer exist. This has been verified carefully by increasing the accuracy of the
computations in these regions. Finally, with non-zero D/L there are so-called band
gaps, although this is not immediately apparent from figure 4 as they are quite narrow.
For example, for 0.99π . κL . 1.01π there is no corresponding real value of q1L. In
other words, for κL in this range (and for q2L = 0) it is not possible for waves to
propagate through the array without change of amplitude.

For a larger radius, as in figure 5, the situation is more confused and it is not easy
to identify the different modes by direct comparison with figure 3. The labelling on
the figure was arrived at by observing the changes as D/L was increased through
values not displayed here, and confirmed by computation of the eigenvector. The
existence of band gaps is now clearly displayed; the first band gap has now widened
to 0.77π . κL . 1.14π. The significance of these band gaps will be discussed later in
§§ 6–7.

For q1L equal to either zero or π, the solutions obtained may satisfy either
homogeneous Dirichlet or homogeneous Neumann conditions on x = ±L/2. This
can be seen explicitly by examining the symmetries of φ as in equations (42)–(45).
In particular, q1L = 0 can correspond to either the symmetric Neumann modes
or the antisymmetric Dirichlet modes while q1L = π can correspond to either the
antisymmetric Neumann or the symmetric Dirichlet modes. Similar comments apply
to q2W and the cell boundaries at y = ±W/2. Hence, for q1L and q2W both equal to
one of zero or π, the solutions obtained may correspond to standing waves satisfying
the same homogeneous boundary condition on opposite sides of the cell. To obtain
other standing-wave solutions satisfying, for example, a homogeneous Neumann
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Figure 6. Boundary conditions and symmetries for NS, NA and DS modes (q2 = 0).
Notation: N – Neumann, D – Dirichlet, S – symmetric, A – antisymmetric.

condition on x = −L/2 and a homogeneous Dirichlet condition on x = L/2 the
underlying periodicity of the solutions must be increased to accommodate a cell of
twice the size.

4.3. Connection with trapped modes

The variational method is now used to investigate how so-called ‘trapped modes’ are
recovered as one of the cell dimensions, W say, is allowed to increase indefinitely.
A trapped mode is a free oscillation of finite energy within an unbounded fluid.
Callan, Linton & Evans (1991) proved that such trapped modes may exist within a
rigid, parallel-walled channel of infinite length that has a rigid cylinder symmetrically
placed about the centreline. Subsequently, trapped modes have been found to exist
when homogeneous Dirichlet conditions are applied on the channel walls (this is
non-physical within the context of water waves in a channel, but the problem can
be interpreted in terms of wave interaction with arrays of cylinders; see Maniar &
Newman 1997).

Evans & Porter (1999) give a review of the present state of knowledge regarding
trapped modes supported by a rigid cylinder in a channel, and the following summar-
izes some of these results using their notation for mode identification (the notation
is illustrated in figure 6). Modes satisfying Neumann (Dirichlet) conditions on the
channel walls, here x = ±L/2, are denoted by N(D) and modes that are symmetric
(antisymmetric) about y = 0 are denoted by S(A). For some κL ∈ (0, π) an NS trapped
mode exists for any D/L, but an NA mode exists only for D/L & 0.81. For some
κL ∈ (0, 2π) a DS mode exists for all D/L . 0.68, but no corresponding DA mode
has been found. All of these modes are antisymmetric about the centreline of the
channel x = 0 and are below the first appropriate cut-off frequency for antisymmetric
propagating modes. The cut-off for Neumann modes is κL = π and for Dirichlet
modes it is κL = 2π.

The notation described above has been used to identify some of the standing-wave
modes in figure 5. In view of equations (42)–(45), for the Bloch problem this notation
is sufficient to identify all boundary conditions applied on the cell perimeter and all
symmetries about x = 0 and y = 0; see figure 6. In this figure, the letters not in square
brackets correspond to the boundary conditions and symmetries associated directly
with the mode name. For q1L = 0 there is a double eigenvalue at κL ' 1.896π and
the DS mode is the limit of the I3 curve as q1L → 0. Data showing the approach to
trapped modes as W/L increases are given in table 1. The trapped mode frequencies
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W/L κL (0.5, NS) κL (0.9, NS) κL (0.9, NA) κL (0.5, DS)

1 0.765π 0.526π 2.053π 1.896π
2 0.860π 0.818π 1.149π 1.942π
3 0.879π 0.851π 1.031π 1.951π
4 0.884π 0.859π 1.002π 1.954π
5 0.885π 0.860π 0.992π 1.955π
∞ 0.886π 0.861π 0.99π 1.956π

Table 1. Approach of standing-wave frequencies to trapped-mode frequencies as the cell aspect
ratio W/L → ∞. The number in parentheses is the cylinder diameter D/L and the letters identify
the mode (see the text and figures 5 and 6).

1.0

0.5

0
–0.5 0 0.5

y/W

u

Figure 7. Approximate eigenfunction u (NS mode) vs. y/W on x = L/2 for W/L = 1 (– – – –),
W/L = 3 (– · – · –), and W/L = 5 (——–); D/L = 0.5, q2L = 0.

(W/L → ∞) are taken from Maniar & Newman (1997) for the NS and DS modes,
and from Evans & Porter (1999) for the NA mode. The latter value was estimated
from graphical results and so is given to only two significant figures.

Consider first the modes corresponding to q1L = π. For D/L = 0.5, as W/L→ ∞
the NS mode marked in figure 5 remains the only mode below κL = π. All other
modes remain above κL = π, and will tend asymptotically to a cut-off at κL = nπ for
some positive integer n (under the assumption that there are no ‘embedded’ trapped
modes for this geometry, that is trapped modes with wavenumbers above the cut off
at κL = π). For this NS mode, the convergence of κL to the trapped mode value
as W/L increases is shown in table 1. For D/L = 0.5, the marked NA mode does
not become a trapped mode. However, for D/L = 0.9, as W/L → ∞ the lowest NS
and NA modes both asymptote to trapped modes below the cut-off at κL = π as
shown in table 1. Again, all other modes appear to remain above the cut-off as W/L
is increased.

The eigenvalues are clearly very close to the trapped-mode frequencies forW/L = 5.
The change in the approximate eigenfunction u (calculated from equation (31)) as
W/L increases is illustrated in figure 7 for an NS mode showing that, as W/L→∞,
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q1L
1
5
π 1

4
π 1

3
π 2

5
π 1

2
π 3

5
π 2

3
π 3

4
π 4

5
π

κL (BB) 0.197π 0.246π 0.328π 0.394π 0.491π 0.588π 0.651π 0.728π 0.773π
κL (RB) 0.200π 0.250π 0.332π 0.398π 0.497π 0.594π 0.657π 0.733π 0.777π

Table 2. Comparison between the present calculations (BB) and Rayleigh–Bloch wave frequencies
(RB); W/L = 5, D/L = 0.5, q2L = 0.

u becomes increasingly concentrated around y = 0 and seems to approach zero at
y/W = ± 1

2
, which is the expected behaviour if the limit is to be a trapped mode.

The final mode marked in figure 5 is the DS mode corresponding to q1L = 0. The
antisymmetric propagating-wave cut-off is at κL = 2π when Dirichlet conditions are
applied on the channel walls and the trapped mode value of κL is now a little below
2π (see table 1). As W/L is increased, more and more modes move below κL = 2π.
Calculations suggest that, with the exception of the DS mode, these modes all satisfy
Neumann conditions on x = ±L/2 and are symmetric about x = 0; in an infinite
channel there is no positive cut-off frequency for such modes and so in general the
potential will not decay to zero as |y| → ∞. Thus, it seems that the single DS mode
is the only mode that can asymptote to a trapped mode for q1L = 0 and κL < 2π.

Note that standing waves that asymptote to trapped modes can be found irrespec-
tive of whether a Dirichlet or Neumann boundary condition is applied on y = ±W/2
(that is whether q2W = 0 or q2W = π respectively). In fact, for κL < π the standing-
wave frequency obtained from the Dirichlet conditions provides an upper bound for
the trapped-mode frequency and that from the Neumann problem provides a lower
bound; this result has been established for trapped modes by Khallaf, Parnovski &
Vassiliev (2000, § 3).

4.4. Connection with Rayleigh–Bloch waves

A generalization of a trapped mode is the so-called ‘Rayleigh–Bloch’ wave. Such waves
may propagate along an infinite row of equally spaced, rigid, vertical cylinders with
decay of the fluid motion to zero in the direction normal to the row. Evans & Porter
(1999) give a review of the present state of knowledge concerning Rayleigh–Bloch
waves of this type and they report two types of such waves that, for a fixed q1L6 π,
exist for discrete κL ∈ (0, q1L). These are waves symmetric about x = 0 that exist for
all non-dimensional cylinder diameters D/L ∈ (0, 1], and waves antisymmetric about
x = 0 that exist only when 0.81 . D/L6 1. As for trapped modes, the numerical
evidence suggests that the frequencies of Rayleigh–Bloch waves are recovered in the
present problem by taking the limit W/L → ∞. Comparison between the present
calculations and those for symmetric Rayleigh–Bloch waves made by Porter & Evans
(1999, table 2) is made in table 2.

Another example is illustrated in figure 8. For D/L = 0.9, all but two of the
frequency curves remain above the cut-off at κL = q1L. The complete curve below
the cut-off corresponds to symmetric Rayleigh–Bloch waves and the partial curve
to antisymmetric Rayleigh–Bloch waves. The latter curve is close to the appropriate
curve in figure 10(b) of Evans & Porter (1999). Calculations for D/L = 0.5 are
reported by Evans & Porter (1999) and McIver, Linton & McIver (1998) and their
graphical results may be compared with the I1 curve in the present figure 5.

The limiting values as q1L → π of the Rayleigh–Bloch wavenumbers κL corre-
sponding to the two lowest curves in figure 8 are just the NS and NA trapped
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Figure 8. (a) Eigenvalue κL vs. wave vector q1L; W/L = 5, D/L = 0.9, q2L = 0. (b) An
enlargement of part of (a). The dashed line is the cut-off κL = q1L.

modes for D/L = 0.9 given in table 1. All known Rayleigh–Bloch waves become
trapped waves in this limit. The DS mode discussed in § 4.3 is not the limit of any
known Rayleigh–Bloch wave and it may be that there is a hitherto undiscovered
Rayleigh–Bloch wave for which the DS mode is the limit.

5. Numerical calculations within the stopping bands
The variational method of § 4 is suitable only for calculations within passing bands,

that is when the Bloch wave vector q = {q1, q2} is real. In this section an outline is
given of two standard numerical methods that can be used for calculations within
stopping bands when, in general, q is complex and the amplitude of a wave will
decay as it propagates. Like the method of § 4, no assumptions are made about the
parameter sizes or the direction of propagation and so these techniques are both more
accurate and more general than the wide-spacing approximation of § 3.

5.1. Point-matching formulation

For specified κ and q2, the problem defined by equations (2) and (13)–(15) may be
formulated as an eigenvalue problem for q1 as follows. The series

φ = A0C0(κr) +

N∑
n=1

Cn(κr) (An cos nθ + Bn sin nθ) , (50)

where

Cn(κr) = Jn(κr)Y
′
n (κD/2)− Yn(κr)J ′n(κD/2), (51)

satisfies both the field equation (2) and the cylinder boundary condition (15). Here Jn
and Yn denote Bessel functions of order n. The remaining Bloch conditions (13)–(14)
are satisfied pointwise. Let (r, θ) = (ri, θi) be the polar coordinates of P + Q points
on two sides of the primitive cell {|x|6L/2, |y|6W/2}. The first P points are on
{x = L/2, |y|6W/2} and, in order to apply the Bloch conditions, complementary
points (r, θ) = (ri, π − θi) are required on {x = −L/2, |y|6W/2}. The remaining Q
points are on {y = W/2, |x|6L/2} with complementary points (r, θ) = (ri,−θi) on
{y = −W/2, |x|6L/2}.



116 P. McIver

Application of the Bloch conditions at these points leads to a system of equations
for the unknown coefficients {A0, A1, . . . , AN, B1, . . . , BN} = xT , say. If the conditions
are satisfied in the least-squares sense then a necessary condition for a minimum of
the sum of squares of the residuals with respect to x has the form

Ax = 0, (52)

where A is a (2N+ 1)× (2N+ 1) matrix. There is a non-trivial solution for x provided
detA = 0. Rather than seek a zero of detA, values of κL and q2W are specified
and |detA| minimized as a function of q1L. This formulation works very well for
κW . 2π. Within this range, an accuracy for q1L of a three digits or more is usually
obtained for N = 16 and P = Q = 4N.

The system of equations resulting from application of the Bloch conditions may also
be rewritten as a generalized eigenvalue problem for the eigenvalue eiq1L which can be
solved using the QZ algorithm (Golub & Van Loan 1983). A reduction to a standard
eigenvalue problem is not possible in general as the matrices involved become nearly
singular as P and Q are increased. The method works well for κL . 4π, but for
κL & 4π large values of N, P and Q are required to obtain reasonable accuracy
and the QZ algorithm becomes unreliable and may converge to erroneous values
if insufficient care is taken. With this in mind a more robust, but more expensive,
method of computation is described in the next section.

5.2. Boundary-integral formulation

For given κ and q2, the problem defined by equations (2) and (13)–(15) may be
formulated as an eigenvalue problem for q1 using an application of Green’s theorem
to the potential φ and a suitable Green’s function G. The Green’s function is chosen
to satisfy the cylinder-surface boundary condition (15) and is

G(x, y; ξ, η) = H0(κR)−
∞∑
n=0

εn
J ′n(κD/2)

H ′n(κD/2)
Hn(κρ)Hn(κr) cos n(θ − ψ). (53)

Here, (ρ, ψ) and (ξ, η) are respectively the polar and Cartesian coordinates of the
source point P , (r, θ) and (x, y) are the corresponding coordinates of the field point
Q, R is the distance between P and Q and satisfies

R2 = (x− ξ)2 + (y − η)2 = r2 + ρ2 − 2rρ cos (θ − ψ), (54)

Hn denotes the Hankel function of the first kind and order n, ε0 = 1, and εn = 2
for n> 1. That G satisfies the boundary condition (15) may be verified using Graf’s
addition theorem (Abramowitz & Stegun 1964, equation 9.1.79).

With the above choice of Green’s function, Green’s theorem yields

φ(P ) =
1

2i

∫
S

(
φ(Q)

∂G

∂nQ
(P ;Q)− G(P ;Q)

∂φ

∂nQ
(Q)

)
dsQ (55)

where the integration is taken over the boundary S of the rectangular region
{|x|6L/2, |y|6W/2}, and the subscript Q on the outward normal coordinate n
and the tangential coordinate s is used to denote derivatives with respect to the field
variables. Substitution of the representation (55) into the conditions on φ in equations
(13)–(14), and application of all of (13)–(14) under the integral sign, gives a set of
four coupled integral equations for the four unknown functions:

f(y) ≡ φ(L/2, y), u(y) ≡ ∂φ

∂x
(L/2, y), |y|6W/2, (56)
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Figure 9. Bloch transmission coefficient |TB| vs. wavenumber κL; W/L = 1, D/L = 0.5, q2L = 0:
——–, full numerical calculations; – – – –, solutions of equation (29).

g(x) ≡ φ(x,W/2), v(x) ≡ ∂φ

∂y
(x,W/2), |x|6L/2. (57)

Divide the interval |y|6W/2 into M elements of equal length and the interval
|x|6L/2 into N elements of equal length. The functions f(y), u(y), g(x) and v(x) are
assumed to be constant over the appropriate individual elements which allows the
simultaneous integral equations to be reduced in a standard way to a matrix system
for the unknown function values that has the form

A(λ2, κL)x = λ1B(λ2, κL)x, (58)

where λ1 = eiq1L, λ2 = eiq2W , A and B are matrices of order 2(N+M)×2(N+M), and
x is the vector of unknown function values. Equation (58) is a generalized eigenvalue
problem for the eigenvalue λ1 which can be solved by the QZ algorithm (Golub &
Van Loan 1983). Significant reduction in computational time can be obtained by
reducing the size of the system by elimination from (58) of the elements of x that
correspond to values of f(y) and u(y). Note that a reduction to a standard eigenvalue
problem is not possible as the matrices involved become nearly singular as M and N
increase. Computations for a square cell suggest that q1L may be computed to about
three-figure accuracy for κL . 4π by taking M = N = 16. The boundary-integral
method is recommended for calculations of TB in the stopping bands for κL & 2π.

5.3. Results

Here results are presented that were obtained using the methods of § 5.1 and § 5.2.
Typical results for the Bloch transmission coefficient TB = eiq1L (see § 3) are illustrated
in figure 9 for the case q2L = 0. As noted previously, because of the geometrical
symmetries, a reversal in the sign of q1 gives essentially the same solution, but
with wave propagation in the opposite direction, and thus attention is restricted to
Re q1L ∈ [0, π]. The parameter values used are the same as in figure 5 in which
the passing and stopping bands may be identified and compared with the results
shown in figure 9. The ranges 0 < κL . 0.77π, 1.14π . κL . 1.79π and 1.90π .
κL < 2π are passing bands where |TB| = 1 so that the waves propagate through the
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Figure 10. Real (——–) and imaginary (– – – –) parts of q1L vs. wavenumber κL;
W/L = 1, D/L = 0.5, q2L = 0.

array with constant amplitude. The complementary ranges 0.77π . κL . 1.14π and
1.79π . κL . 1.90π are stopping bands in which |TB| < 1 so that the waves change in
amplitude as they propagate. In the full numerical calculations of figure 9 the passing
bands were first identified using the method of § 4.1 and then TB was computed in the
stopping bands using the above least-squares formulation. Comparison is made with
the wide-spacing approximation result (29) and the agreement is generally excellent
despite the violation of the assumptions behind the approximation. The reduction in
the accuracy near κW = 2nπ, where n is a positive integer, is typical; this point is
discussed further in § 7.

Figure 10 shows how the real and imaginary parts of q1L vary with κL for the same
geometry as used in figure 9. The solutions displayed have positive imaginary part;
there are corresponding solutions with negative imaginary parts of equal magnitude.
As κL is increased in the first passing band, Im{q1L} = 0 and the I1 mode is
followed up to the first stopping band. Within the stopping band the phase Re {q1L}
remains constant while Im{q1L} varies. The I2 mode is then followed until the second
stopping bound where Re {q1L} again remains constant. After the second stopping
band there are two modes; the II1 mode is followed in figure 10. The qualitative
behaviour obtained here from numerical calculations confirms exactly that observed
in the approximate solution of § 3 that is based upon a wide-spacing approximation.

6. Unidirectional wave propagation through an array
The behaviour described in the preceding sections for a doubly infinite array is

related to the reflection and transmission properties of an array that has finite length
in the x-direction. In particular, for wave parameters that correspond to the stopping
bands of the infinite array problem, there is little transmission through a finite array
even when there is only a small number of rows. This is illustrated here for normal
incidence, q2 = 0, and κW < 2π using the wide-spacing formalism of Evans (1990).
This is based on the same assumptions made in the approximate calculation of the
Bloch transmission coefficient described in § 3. Consider N infinitely long rows of
cylinders situated at x = Lm, m = 1, 2, . . . , N. Each row may be thought of as a single
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cylinder with axis on y = 0 between channel walls at y = ±W/2. Divide the fluid
domain into N + 1 regions as follows:

Region 1: −∞ < x < L1,
Region m: Lm−1 < x < Lm, m = 2, 3, . . . , N,
Region N + 1: LN < x < ∞.

 (59)

Here Lm+1−Lm = L, m = 1, 2, . . . , N−1. It will be assumed that κL� 1. Suppose that
an incident plane wave propagates in the direction of x increasing and this is reflected
and transmitted by the complete grating. Under the wide-spacing approximation, at
sufficiently large distances from the cylinders, in region m the solution may be written
as

φ = Ameiκx + Bme−iκx. (60)

In region 1 this will correspond to the incident and reflected wave for the complete
grating and in region N + 1 to the transmitted wave. The solutions in region m and
region m+ 1 may be related to the reflection and transmission coefficients for a single
row, R and T respectively, in the same way as described before equations (20). This
leads to the equations

A1 = 1, B1 = RN, AN+1 = TN, BN+1 = 0, (61)

Am+1 eiκLm = TAm eiκLm + RBm+1 e−iκLm ,

Bm e−iκLm = TBm+1 e−iκLm + RAm eiκLm ,

}
m = 1, 2, . . . , N, (62)

where RN and TN are the reflection and transmission coefficients for the complete
array of N rows. The steps described by Evans (1990) allow this system to be rewritten
in the form (

TNei(κLN+κL)

0

)
= SN

(
eiκL1

RNe−iκL1

)
(63)

where S is the scattering matrix defined in equation (23). The system is easily solved
to determine RN and TN . Let

SN ≡
(
s11 s12

s21 s22

)
(64)

then, in particular,

TN = eiκ{L1−LN−L}
(
s11 − s12s21

s22

)
. (65)

For purely numerical purposes it is straightforward to evaluate SN directly. How-
ever, Evans (1990) gives an explicit formula for SN which yields further insight into
the problem. From Evans’ result it is easy to deduce that

s11 − s12s21

s22

=
sinh β

sinh (β −Nα) (66)

where

cosh α =
eiκL

2T

(
T 2 − R2 + e−2iκL

)
=

cos (δ + κL)

|T | , (67)

cosh β =
eiκL

2R

(
T 2 − R2 − e−2iκL

)
=

sin(δ + κL)

|R| , (68)

and δ is the phase of the transmission coefficient introduced in equation (25). From
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Figure 11. Transmission coefficient |T10| for ten rows of cylinders (dashed line) and Bloch
transmission coefficient |TB|10 (solid line) vs. wavenumber κL; W/L = 1, D/L = 0.5.

equation (29) it may be seen that α is directly related to the Bloch wavenumber q1 in
the corresponding periodic-array problem.

At wave frequencies for which |T | < | cos (δ + κL)|, α has a non-zero real part and
β is pure imaginary. Let β = ib so that

|TN |2 =
sin2 b

sin2 b+ sinh2 Nα
(69)

and it is readily apparent that |TN | → 0 as N → ∞. The frequencies at which this
behaviour occurs correspond precisely to the stopping bands in the infinite-array
problem. At wave frequencies for which |T | > | cos (δ + κL)|, α = iq1L is pure
imaginary and cosh β and sinh β are both real. In this case

|TN |2 =
sinh2 β

sinh2 β + sin2 Nq1L
, (70)

and hence |TN | is oscillatory. The frequencies at which this behaviour occurs corre-
spond precisely to the passing bands in the infinite-array problem.

The above behaviour of TN is confirmed in figure 11 using results for a grating with
N = 10 rows. The required reflection and transmission coefficients for a single cylinder
were calculated by the method of Linton & Evans (1993). Comparison is made with
|TB|10 which is the transmission coefficient for propagation through a distance 10L
in the doubly infinite array. The oscillatory behaviour in |T10| is due to end effects
for the finite number of rows. Clearly, the Bloch transmission coefficient may be used
to predict the properties of a large, but finite, number of rows of cylinders. Similar
numerical comparisons of the Bloch transmission coefficient with the transmission
by finite arrays have been made by Heckl & Mulholland (1995) in the context of
acoustic transmission in tube bundles.

The approximate positions of the troughs in transmission (and hence peaks in
reflection) can be explained through the phenomenon of Bragg scattering that is well-
known in x-ray diffraction by a crystal (Ashcroft & Mermin 1976, p. 96). For strong
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overall reflection to occur the waves reflected from different rows of a grating must
interfere constructively and, for the normal incidence investigated here, this occurs
when κL = nπ, for integer n, which is clearly consistent with the results of figure 11.

7. Multi-directional wave propagation through an array
The previous section dealt with normal incidence on a grating and with frequencies

where the reflected and transmitted waves are also normal to the grating. This section
deals with an arbitrary angle of incidence and with the general case where the reflected
and transmitted fields may contain components whose propagation direction is not
parallel to the incident wave. Again, the reflection and transmission properties of the
finite array are related to the stopping and passing bands for the infinite array.

Consider wave scattering by a grating of N identical rows of cylinders as described
at the beginning of § 6; the configuration is assumed to be symmetric about x = 0. A
wave with potential

φI = eiκr cos (θ−θq) (71)

is incident from the left at an angle θq to the x-axis, where (r, θ) are polar coordinates
defined by (x, y) = (r cos θ, r sin θ). This wave will be diffracted to obtain a reflected
field

φ ∼
ν∑

p=−µ
Rqpe

−iκr cos (θ+θp) as x→ −∞ (72)

and a transmitted field

φ ∼
ν∑

p=−µ
Tqpe

iκr cos (θ−θp) as x→∞, (73)

where

sin θp = sin θq +
2pπ

κW
, (74)

µ = [(1 + sin θq)κW/2π], ν = [(1− sin θq)κW/2π], (75)

and [·] indicates that the integer part should be taken (see Twersky 1962). The far-field
forms (72)–(73) are valid for any integer q ∈ [−µ, ν]. Conservation of energy requires
that the components of the reflection and transmission matrices R and T satisfy

ν∑
p=−µ

(|Rqp|2 + |Tqp|2) cos θp = cos θq (76)

(Twersky 1962). An algorithm for the computation of approximations to the reflection
and transmission matrices for multiple rows from the properties of a single row is
given by Heckl & Mulholland (1995, § 3.2), and their formulation was used for the
calculations described below. The reflection and transmission matrices for a single
row were calculated using the method of Linton & Evans (1993).

Heckl & Mulholland (1995) also give an approximate method for the calculation
of the Bloch transmission coefficient. When compared with the present methods there
is good agreement except in the vicinity of κW = 2nπ, for positive integer n, where
there can be considerable disagreement. This disagreement can be accounted for by
the neglect of evanescent modes in the method of Heckl & Mulholland (1995). In
particular, the decay with distance of evanescent modes can be small near κW = 2nπ,
and hence they may make a significant contribution to hydrodynamic interactions.
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Figure 12. Transmitted energy ET for normal wave incidence vs. number of rows of cylinders N;
W/L = 1, D/L = 0.5, κL = 2.7π (– · – · –), κL = 3π (– – – –), κL = 3.7π (——).

Computations for scattering by multiple rows are now used to illustrate the rela-
tionship between that problem and the Bloch problem of wave transmission through
an infinite array. The results in figure 12 are for normal incidence (θq = 0) and show
how the quantity

ET =

ν∑
p=−µ
|Tqp|2 cos θp, (77)

which is proportional to the transmitted wave energy, varies with the number of
rows N. Results are given for three wavenumbers κL ∈ (2π, 4π) for which, according
to (75), there is a total of three propagating wave directions. The wavenumber
κL = 2.7π is within a stopping band (see figure 5) and there is very little energy
transmission through more than two rows of cylinders. By contrast, κL = 3π is within
a passing band and there is significant wave transmission through any number of
rows. The third value κL = 3.7π is not within a stopping band. However, it can
be seen from figure 5 that the only mode that can propagate through an infinite
array is antisymmetric about y = 0. However, under normal incidence, the scattering
problem is completely symmetric and antisymmetric waves cannot be excited, leading
to suppression of wave transmission through the finite array. If the angle of incidence
is not zero but instead one of the other associated propagation directions, so that
sin θq = 2π/κW say, then the problem is no longer completely symmetric and there is
significant energy transmission through any number of rows for κL = 3.7π. However,
the transmission in the ‘symmetric’ normal direction is still negligible.

In this scattering problem, the complete solution has the form

φ(x, y) = eiq2yψ(x, y), (78)

where

q2 = κ sin θq (79)

and ψ is periodic in y with period W . Thus, the y variation is exactly that occurring
in the Bloch problem. By specifying q2 in the Bloch problem according to equation
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Figure 13. Maximum Bloch transmission |TB| vs. angle of incidence θq;
W/L = 1, D/L = 0.5, κL = 2.7π.
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Figure 14. Passing (unshaded) and stopping (shaded) regions as a function of angle of
incidence θq and wavenumber κL; W/L = 1, D/L = 0.5.

(79) and solving for the Bloch transmission coefficient TB useful information can be
obtained about the scattering problem. For most wavenumbers there are at least two
distinct values of |TB| and hence, in figure 13, the maximum |TB| is plotted as a
function of angle for fixed κL. The variational method of § 4.1 was used to identify
the passing bands and the boundary-integral method of § 5.2 was used to make
calculations within the stopping bands. When |TB| = 1 significant wave energy can
be expected to propagate through a finite number of rows. When |TB| < 1 little wave
energy will propagate through the complete system and the decay with distance can
be estimated from |TB|.

A wider picture in figure 14 shows the distribution of passing and stopping regions
as a function of incidence angle and wavenumber. This figure was constructed using
the technique described at the end of § 4.1. In the unshaded regions, max{|TB|} = 1
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and in general there will be significant wave transmission through a finite array. In
the shaded regions |TB| < 1 and, in general, wave transmission will be effectively
blocked within the first few rows of a finite array.

8. Conclusion
A variety of techniques has been presented for the calculation of water-wave

propagation through an infinite array of vertical cylinders extending throughout the
fluid depth and periodic in both horizontal directions. The phenomena of stopping
and passing bands that arise in solid-state physics have been shown to arise in this
water-wave Bloch problem as well.

The point-matching technique of § 5.1 may be extended to other cylinder geometries
by modifying the series in equation (50). For example, the corresponding series for
a circular cylinder extending through only part of the fluid depth can be calculated
using the method given by Garrett (1971). For this geometry, the potential will no
longer have the form (1). However, (1) will hold approximately sufficiently far from the
cylinder for evanescent modes to be negligible, and so an approximate theory strictly
valid only for small cylinder-to-spacing ratios is obtained. A similar modification of
the Green’s function (53) can be made in the boundary-integral method of § 5.2.

The final sections of the paper are devoted to the relationship between the Bloch
problem and water-wave scattering by a finite number of rows, but where each row
is of infinite extent. Further work is required to relate the Bloch problem to wave
scattering by an array that is finite in both horizontal directions.

The author is grateful to Dr C. M. Linton for providing reflection and transmission
data based on the work of Linton & Evans (1993), and to the referees for their
suggestions that have significantly improved this paper.
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